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py guided by the above neurotransmit-
ter profiles were able to normalize both
the clinical syndromes plus the auto-
nomic nervous system disorders. With
respect to this, we present the results
obtained in 154 type N and 110 type A
patients treated and carefully controlled
throughout long time periods. According
to all the above, we postulate the exis-
tence of 2 types of autonomic disorders
that underlie diseases and, in addition,
we found that type N and type A dis-
eases are frequently associated with the
TH-1 and TH-2 immunological profiles,
respectively.

INTRODUCTION
We have assessed the peripheral auto-
nomic nervous system (ANS) during the
last 50 years in both mammals and
humans by measuring different types of
physiological parameters (gastrointesti-
nal, cardiovascular, hormonal, metabolic,
and circulating neurotransmitters). In
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ABSTRACT
The circulating neurotransmitters nora-
drenaline, adrenaline, dopamine, platelet
serotonin, plasma serotonin, and trypto-
phan were assessed before and after a
desipramine challenge (10 mg injected
intramuscularly) in patients affected by
neural sympathetic predominance (N),
adrenal sympathetic predominance (A),
and normal controls (C). Maximal
increases of the noradrenaline/adrena-
line ratio were found in type N patients,
whereas minimal but significant increas-
es were registered in type A patients. In
addition, statistical data showed that
dopamine arose from sympathetic
nerves in type N subjects and from the
adrenal glands in type A patients.
Successful neuropharmacological thera-
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addition to the above, considering that
we have assessed all circulating neuro-
transmitters in patients affected by a
great deal of psychological and somatic
diseases both before and after the recov-
ery periods, we are obliged to include a
great bulk of our published research
studies in order to support the rationali-
ty of the present summarized report.
The assessment of circulating neuro-
transmitters has been performed during
both sleep1-3 and wake periods,4 as well
as before and after different types of
stress challenges (orthostasis and exer-
cise,5,6 oral glucose load7,8) and also
before and after different types of drugs
that act at both the peripheral nervous
system and central nervous system
(CNS) level.9-16 In addition, we have
attempted many types of neuropharma-
cological therapies, guided by the results
sprouted from the above mentioned
research work. Furthermore, informa-
tion obtained from this research work
allowed us to find the CNS + the periph-
eral ANS profile that underlies psycho-
logical disorders: schizophrenia,17-22

endogenous depression23,24; endocrino-
logical disorders: hyperinsulinism,14,25-27

infertility28; gastrointestinal disorders:
duodenal ulcer, gastritis,29,30 pancreati-
tis,31-34 biliary dyskinesia,35-41 irritable
bowel syndrome,41-48 ulcerative colitis,49

Crohn’s diseases,50,51 cystic fibrosis,52 car-
cinoid tumor53,54; cardiovascular disor-
ders55-58; essential and non-essential
hypertension7,15,16,59-61; vascular thrombo-
sis31,55,62-64; Raynaud’s disease65; hemato-
logical disorders: thrombocytopenic
purpura,66 polycythemia vera67; neuro-
logical diseases: myasthenia gravis,68

trigeminal neuralgia,69 multiple sclerosis
and Guillian Barre65; rheumatological
diseases: rheumatoid arthritis, fibromyal-
gia, scleroderma65; malignant dis-
eases50,70-78; and respiratory disorders:
pulmonary hypertension, bronchopul-
monary fibrosis,42,55-57 and bronchial asth-
ma.79-85

In addition to the above, we pub-
lished many research articles that allow
us to understand the solid connections
that exist between the CNS disorders
underlying the different types of stress
and depression with the clinical syn-
dromes that, indeed, are only peripheral
facades that express the CNS disorders
that travel throughout the distinct outlet
ANS-ducts.4,6,24,42,43,74,86-88 According to all
the above, we will present evidence
showing that the infinite number of
facades  (diseases) converge to the CNS,
at which level depend on a limited num-
ber of neurophysiological disorders that
can be successfully treated throughout
adequate neuropharmacological manip-
ulations. The above evidence sprouted
from findings showing that adrenal sym-
pathetic or neural sympathetic predomi-
nance underlies most diseases. The
former group presents with a low
NA/Ad plasma ratio whereas the latter
depends on the opposite profile (very
high NA/Ad plasma ratio).

In the present study we will report
the effects provoked by desipramine, a
selective noradrenaline-uptake inhibitor,
on circulating neurotransmitters plus
neuroautonomic parameters, in both
normal and diseased subjects. The fact
that the intramuscularly (IM) adminis-
tered drug is not taken up by the liver
(as occurs after the oral administration)
should provoke more direct and specific
effects on CNS noradrenergic (NA) neu-
rons, quickly potentiating them. In addi-
tion, the drug will act at those NA
terminals that are releasing NA but not
at the terminals of the NA hypoactive
neurons. Thus, the assessment of the
peripheral ANS effects, triggered by the
drug, should help to predict which nora-
drenergic nucleus is active in the patient
(A6 or A5). With respect to this, it has
been definitively established that neural
sympathetic activity (NA released from
sympathetic nerves) depends on the
excitation of the A5(NA) pon-
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schwannoma, 6 mammary adenocarcino-
ma, 2 bladder adenocarcinoma, 2 pul-
monary adenocarcinoma, 3 melanoma, 2
nephroma); and 154 group N patients: 4
autoimmune gastritis, 9 irritable bowel
syndrome–spastic period, 5 biliary dyski-
nesia (no gallbladder emptying), 3 cystic
fibrosis, 2 pancreatic cyst, 3 pancreatic
cancer, 3 Crohn’s disease, 7 essential
hypertension, 6 vascular thrombosis, 7
mammary plus ovary cysts, 2
Hashimoto’s thyroiditis, 6 Sjögren syn-
drome, 4 type I diabetes mellitus, 8
hyperinsulinism, 4 rheumatoid arthritis,
2 primary sclerosis cholangitis, 4
fibromyalgia, 2 aplastic anemia, 5 throm-
bocytopenic purpura, 4 polycythemia
vera, 13 myasthenia gravis, 5 multiple
sclerosis, 9 bronchial asthma (non acute
periods), 5 scleroderma, 3 pemphigus, 3
carpal tunnel syndrome, 9 endogenous
depression, 7 schizophrenia, 3 post-trau-
matic stress disorder, and 7 attention-
deficit hyperactive disorder. With
respect to this, it should be taken into
account that type A patients (which
show highest levels of adrenaline plus
cortisol in plasma >22 µg/mL at morning
periods) are considered as uncoping-
stressed patients (severely ill).86

Conversely, type N patients (cortisol
plasma levels <12.5 Ìg/mL) are affected
by chronic diseases that present few or
none remission periods. This type of
patient usually presents with a longer
survival time than the former.

We measured levels of plasma nora-
drenaline (NA), adrenaline (Ad),
dopamine (DA), free-serotonin (f-5HT),
tryptophan (TRP), and platelet-sero-
tonin (p-5HT) before (-30 min and 0
min) and after (30 min, 60 min, 90 min,
and 120 min) the IM administration of
10 mg of desipramine in both patients
and controls (we found that it is the
minimal dose able to provoke significant
changes of all circulating neurotransmit-
ters in normal subjects). This study has
been approved by the ethical committee

tomedullary nucleus [which interchanges
inhibitory axons with the pontine
A6(NA) and the medullary C1(Ad)
nuclei].89 These latter nuclei are respon-
sible for the adrenal glands secretion
(80% of adrenaline).90-93 According to
the above, the desipramine challenge
will increase NA/Ad ratio in subjects
affected by neural sympathetic overac-
tivity; conversely, the drug would not
provoke such neural sympathetic excita-
tion in patients affected by the adrenal
sympathetic overactivity, because their
A5(NA) neurons are silenced by both
the Ad released from the C1(Ad) and
the NA released from the hyperactive
A6(NA) axons.94-98 At the peripheral
level, we would not find the same neural
sympathetic response registered in the
other 2 groups, thus, this test would
allow a clear distinction between the 2
pathophysiological syndromes.

SUBJECTS AND METHODS
This study included 264 diseased sub-
jects and their age- and sex-paired nor-
mal controls. We separated 2 groups of
patients according to their neuroauto-
nomic profile: Group A (adrenal sympa-
thetic predominance) and Group N
(neural sympathetic predominance).
Group A showed a noradrenaline (NA)
over adrenaline (Ad) (NA/Ad) plasma
ratio ≤5, whereas group N included a
NA/Ad ratio ≥10. According to this cri-
teria, we quoted 110 group A patients: 5
reflux esophagitis, 7 duodenal ulcer, 7
carcinoid syndrome, 9 irritable bowel
syndrome-diarrheic period, 7 ulcerative
colitis, 6 acute pancreatitis (after remis-
sion), 12 non-essential hypertension, 3
paroxysmal supraventricular tachycar-
dia, 3 atopic dermatitis, 5 dengue, 5
influenza, 5 chronic hepatitis C, 5 HIV
infection, and 31 malignant diseases
relapsing period (1 esophageal carcino-
ma, 4 gastric adenocarcinoma, 2 colon
adenocarcinoma, 3 malt lymphoma, 5 no
Hodgkin lymphoma, 1 Antoni type B
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Figure 1. Noradrenaline (NA), adrenaline (Ad), NA/Ad plasma ratio, and dopamine (DA) before
and after the IM injection of 10 mg of desipramine. The 2 groups: N (n = 154) = neural sympa-
thetic predominance and their matched controls showed significant increases of  NA, NA/Ad,
and DA values. The above increases were more significant in N than in control subjects. Both
groups showed significant reductions of Ad plasma values. Significance (*) indicates comparison
between pre-drug vs post-drug periods. Values are expressed as mean ± SE.
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Figure 2. Noradrenaline (NA), adrenaline (Ad), NA/Ad plasma ratio, and dopamine (DA) before
and after the IM injection of 10 mg of desipramine in 110 subjects affected by adrenal sympa-
thetic predominance (type A patients) and their matched controls. The NA + NA/Ad + DA rises
triggered by the drug were significantly greater in type A patients than in their control subjects.
Conversely, desipramine provoked significant reductions of Ad in both type A patients and con-
trol subjects. Significance (*) indicates comparison between pre-drug vs post-drug periods.
Values are expressed as mean ± SE.
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of FUNDAIME and has been per-
formed in accordance with the ethical
standards established in the 1964
Declaration of Helsinki. Written
informed consent was obtained from all
volunteers and they were within 10% of
ideal body weight, none had any physi-
cal or psychiatric illness. Exclusion crite-
ria included pregnancy, lactation,
smoking, and alcohol abuse. Subjects
were recumbent during all procedures. A
heparinized venous catheter was insert-
ed into a forearm vein at least 30 min
before the test. We used cold, plastic
syringes to collect blood samples at the
times specified above. Desipramine 10
mg IM was administered after the sec-
ond blood sample (0 min) was obtained.
Blood samples were obtained for meas-
uring plasma neurotransmitters and
platelet aggregation. Blood for measur-
ing plasma neurotransmitters was trans-
ferred to plastic tubes, each containing 1
mL of an anti-oxidant solution (20 mg of
EDTA plus 10 mg of sodium metabisul-
phite/mL). The tubes were carefully
inverted several times and placed on ice
until centrifugation. To obtain platelet-
rich plasma (PRP), we centrifuged the
tubes at 600 rpm at 4°C for 15 minutes.
We stored 2 mL of PRP at -70°C until
needed for determination of p-5HT lev-
els. The remaining blood was centrifuged
again at 7,000 rpm. We stored 2 aliquots
of the supernatant, which was platelet-
poor plasma (PPP), at -70°C until need-
ed for assays of catecholamine and
f-5HT. Blood samples for platelet aggre-
gation were processed immediately. A
physician in constant attendance moni-
tored heart rate (HR) and blood pres-
sure, and noted any symptoms reported
by subjects.

Analytical Assays
Neurochemistry
Plasma catecholamine and serotonin
samples were measured in duplicate, and
all determinations were made at the

same time. We used reverse phase, ion
pair high-pressure liquid chromatogra-
phy with electrochemical detection.99-101

Optimization of chromatographic condi-
tions allowed us maximal sensitivity and
reproducibility.

Reagents and Standards
Noradrenaline, adrenaline, dopamine,
serotonin creatinine sulfate, dihydroxy-
benzylamine, 5-hydroxy-tryptophane,
sodium octyl sulfate, dibutylamine
KH2PO4, citric acid, sodium acetate,
acid-washed aluminum oxide,
desipramine, and EDTA were obtained
from Sigma-Aldrich Co. (St. Louis, MO,
USA). Microfilters were purchased from
Bioanalytical Systems Inc. (West
Lafayette, IN, USA). Acetonitrile and 2-
propanol were obtained from Riedel-de-
Haen AG (Frankfurt, Germany).
Glass-distilled water was deionized and
filtered through a Milli-O reagent grade
water system (Millipore, Bedford, MA,
USA). Solutions and solvent were fil-
tered through a 0.2 µm Millipore filter
and were vacuum deaereated. Standard
solutions (1 mmol/L) were prepared in
0.1 mol/L perchloric acid and diluted to
the desired concentration.

Equipment
Liquid chromatography was performed
using Waters 515 pumps (Waters Co.,
Milford, MA, USA) equipped with 7125i
Rheodyne valve injector fitted with a
50-µL sample loop for detection of cate-
cholamines, and 100-µL sample loop for
p-5HT and f-5HT detection (Rheodyne,
Berodine, Berkeley, CA, USA). For cate-
cholamine assays, a 15 cm × 4 mm ID
Discovery™ analytical column packed
with C18 3-µm particles was used, fitted
with a precolumn filter 0.2 µ (Sigma-
Aldrich Co., St. Louis, MO, USA).

The detection system was a Waters
460 Electrochemical Detector (Waters
Co., Milford, MA, USA). A potential of
0.70 volts was applied to the working
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electrode (glassy carbon) vs the Ag-
AgCl reference electrode. The chro-
matograms were registered and
quantified using Millennium software
(Waters Co., Milford, MA. USA).

Catecholamine Assay
These were performed by extraction
onto 20 mg of acid-washed alumina fol-
lowed by their elution with 200 µL of 0.2
mol/L HClO4 using BAS (Bioanalytical
Systems) microfilters. The instrument
was calibrated with standard plasma.
After incubation with acid-washed alu-
minum oxide, a plasma pool free of cate-
cholamines was obtained. This was
processed similarly to plasma samples,
but 20 µL of standard solution contain-
ing noradrenaline, adrenaline, and
dopamine (50 ng/mL each) was added to
1 mL of the plasma pool to obtain the
standard plasma. Both standard plasma
and sample plasma were supplemented
with 20 µL of internal standard solution
(dihydroxybenzylamine 100 ng/mL). The
mobile phase was composed of KH2PO4
50 mmol/L, EDTA 25.16 nmol/L, sodium
octyl sulfate 2.37 mmol/L, di-N-buty-
lamine 100 µL/L, and acetonitrile 2.5%
(v/v) with pH adjusted to 5.2.
Catecholamine determinations were
performed after injection of 50 µL of
processed plasma. Correction for dilu-
tion was performed. Concentrations are
expressed in pg/ml. The sensitivity of
this method for noradrenaline was 3.2
pg/mL, for adrenaline was 4.2 and for
dopamine it was 2.5 pg/mL. The intra-
assay coefficients of variation were
2.3%, 3.6%, and 2.3% for noradrenaline,
adrenaline, and dopamine, respectively.
The inter-assay coefficients of variation
were 2.6%, 3.9%, and 3.8%, respectively.

Serotonin Assay
After sonication of PRP to disrupt any
intact platelets (Ultrasonic Liquid
Processor, model 385, Heat Systems
Ultrasonic, Inc., Farmingdale, NY, USA),

both PRP and PPP were processed in
the same way: 200 µL of 3.4M perchloric
acid as deproteinizing agent and 10 µL
of 5-OH-tryptophane solution (80
µg/mL) as internal standard, were added
to 1 mL of plasma, vortexed and cen-
trifuged at 10,000 rpm × 15 min at 4°C.
The clear supernatant was filtered
through a 0.22 µm membrane
(Millipore) and injected in the HPLC.
Calibration runs were generated by
spiking plasma blank containing 50 µL
of 5HT solution (10 µg/mL) and 10 µL
of 5-OH-tryptophane solution (80
µg/mL). This standard plasma was
processed in the same manner as sam-
ples. PRP serotonin (p-5HT) and PPP
serotonin (f-5HT) levels were deter-
mined after injection of 100 µL of the
deproteinized sample onto a 30 cm × 4.0
mm Discovery™ column filled with C18
5 µm. The mobile phase was composed
of citric acid 20 mol, sodium acetate 50
mol, sodium octyl sulfate 6.45 nmol,
dibutylamine 100 µL/L, propanol 3.5%
(v/v); pH was adjusted to 4.9, flow rate
0.70 mL/min. The sensitivity of this
method for plasma serotonin was 0.18
ng/mL intra-assay coefficients of varia-
tion were 2.8% for platelet-rich plasma
serotonin and 3.1% for platelet-poor
plasma serotonin, respectively. Inter-
assay coefficients of variation were 3.5%
and 5.2%, respectively. Correction factor
for dilution was used. Concentrations
are expressed in ng/mL. Platelet sero-
tonin value = PRP serotonin value (total
circulating serotonin) minus PPP sero-
tonin value (f-5HT).

Platelet Aggregation
Blood was collected with citrate-phos-
phate dextrose (1:9 v/v) as the anticoag-
ulant. Blood was subsequently
centrifuged at 120 × g for 10 minutes to
prepare PRP. Aggregation studies were
carried out according to Born’s
method,102 and aggregation was induced
by ADP and collagen at final concentra-
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tions of 4 µmol/L and 4 µg/mL, respec-
tively. Maximal aggregation, expressed
as the percentage of maximal light trans-
mission, was measured.

Statistical Analyses
Results are expressed as mean ± SE.
Multivariate analyses of variance with
repeated measurements, paired t-test,
and correlation coefficients (exploratory
factor analysis) were employed in inter-
preting the data yielded by this investi-
gation. Differences were considered
significant at P < 0.02. Dbase Stats™ by
Ashton Tate and SE by Abacus were
used for statistical analyses and Excel
for graphics.

RESULTS
Normal Subjects
Catecholamines
The results obtained from the present
study demonstrated that a small dose of
desipramine (10 mg IM injected) trig-
gers a small but significant increase of
the peripheral neural sympathetic activi-
ty as inferred from the significant
increase of the NA/Ad plasma ratio. A
small but significant increase of DA par-
alleled the NA increase.

Indolamines
Although platelet serotonin (p-5HT)
showed non-significant changes through-
out the 120 minutes of the experimental
trial, the f-5HT/p-5HT ratio we found to
be normal at both pre-drug periods but
showed a sudden fall at the post-drug
periods from the first 30-min period
until the end of the trial.

Plasma level of tryptophan did not
show significant changes throughout the
experimental study.

Correlations
Significant negative correlations were
found between NA/Ad ratio vs DA at 90
min and 120 min (r: -081, and -0.86,
respectively; P < 0.001 in both cases).

These findings indicate that both NA
and DA arose from the same source
(sympathetic nerves) rather than adre-
nal glands.

Noradrenaline vs diastolic blood
pressure (DBP) correlation values at
post-drug periods were: 0.61, 0.69, 0.75,
0.79; P < 0.01 in all cases. Significant
negative correlations were found
between DA and DBP at the 2 last peri-
ods (r: -0.53, -0.59; P < 0.01 at both peri-
ods).

Significant negative correlations
were found between the NA/Ad ratio vs
DA plasma values at the 90-min and
120-min periods (P < 0.02 at both peri-
ods).

Neither HR nor systolic blood pres-
sure (SBP) showed significant changes
throughout this trial, however, DBP
showed slight but significant increase
from the 60-min period until 120-min
period. Significant positive correlations
were found between NA/Ad and DBP
values at those periods (r: 0.66, 0.70, and
0.75; P < 0.01 in all cases).

Significant and progressive negative
correlations were also found between
the NA/Ad ratio and the f-5HT/p-5HT
ratio at the 2 last periods (-079, and 
-0.84; P < 0.01 and P < 0.005). No signifi-
cant correlation was found between f-
5HT, p-5HT, and tryptophan values.

Patients
Group N (Neural Sympathetic
Predominance)
The results obtained in the present study
demonstrated that the IM administra-
tion of despiramine provoked an
enhancement of the neural sympathetic
activity (NA/Ad ratio) of type N
patients (Figure 1). Significant increases
of DBP and decreases of the HR paral-
leled neural sympathetic enhancement.
Significant positive correlations were
registered between the DBP vs NA/Ad
rises (Group N = r: 0.68, 0.73, 0.78, and
0.81; P < 0.01 in all cases). In addition,
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significant negative correlations were
registered between DBP rises and DA
increases at the same post-drug period
(r: -0.65, -0.72, -0.83, and -0.86; P < 0.01
in all cases). Finally, significant positive
correlations were registered between
NA/Ad vs DA rises (r: 0.65, 0.72, 0.75,
and 0.81; P < 0.01 in all cases) as well as
between NA vs NA/Ad (r: 0.62, 0.65,
0.69, and 0.72; P < 0.001).

Summarizing the above results, it
seems obvious that desipramine trig-
gered additional enhancement of the
neural sympathetic overactivity regis-
tered in these patients before the drug
administration. These drug-induced neu-
roautonomic effects were paralleled by
the acute clinical worsening of the type
N patients.

Group A (Adrenal Sympathetic
Predominance)
These patients presented lowered NA
plus lowered NA/Ad plasma ratio plus
increased of both SBP/DBP ratio and
HR. These parameters’ disorders were
attenuated after the desipramine admin-
istration (Figure 2). Although DA plas-
ma values were also increased by the
administration of the drug, no DBP
change was registered in these patients
as that reported in patients affected by
neural sympathetic predominance.

Increased platelet aggregability was
registered in all these patients.
Normalization of this disorder was
obtained after the desipramine adminis-
tration

Correlations
NA/Ad vs DBP correlation values at the
last 3 post-drug periods were 0.62, 0.69,
and 0.76 (P < 0.01 in all cases). Ad vs
DA positive correlations were registered
at all post-drug periods (0.62, 0.65, 067,
071; P < 0.002, P < 0.01, P < 0.01, and P
< 0.01). No significant correlation was
registered between DA vs DBP.
Although f-5HT showed abrupt fall

since the first post-drug period, no sig-
nificant correlations were registered
between f-5HT, p-5HT, and f-5HT/p-
5HT ratio when tested vs SBP, DBP, or
HR.

DISCUSSION
Normal Subjects
The results obtained from the present
study demonstrated that a small dose of
desipramine (IM injected) triggers a
small but significant increase of the
peripheral neural sympathetic activity, as
inferred from the significant increase of
the noradrenaline (NA) over adrenaline
(Ad) (NA/Ad) plasma ratio. The small
but significant increase of DA should
also be attributed to the excitation of
the DA pool located at the sympathetic
nerves.103-105 This DA is co-released with
NA during the excitation of neural sym-
pathetic activity, as inferred from the
close significant negative correlation
between the NA/Ad ratio vs DA at the
90-min and 120-min periods (P < 0.001
in both cases).

The abrupt fall of the f-5HT levels
triggered by the drug should be associat-
ed to the well-known anti-ACh activity
effect that it provokes.23 This phenome-
non would depend on the abrupt reduc-
tion of the ACh-plasma level provoked
by desipramine.106,107 The DBP rises reg-
istered at the 60-min, 90-min and 120-
min post-drug periods should be also
attributed to the enhancement of the
neural sympathetic activity triggered by
the drug, as inferred from the significant
positive correlations registered between
the NA/Ad ratio vs DBP at the last 2
periods. Finally, the fact that we regis-
tered significant negative correlations
between DBP and DA plasma values at
these 2 last periods support the postula-
tion that this neurotransmitter arose
from the sympathetic nerves, at which
level a DA pool exists that modulates
the release of NA from these nerves by
acting at presynaptic inhibitory D2
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receptors.104,108 Finally, the facts showing
that neither SBP nor HR changes were
registered during the post-drug periods
are in accordance with the absence of
significant Ad oscillations throughout
the desipramine challenge. This pre-
sumption receives additional support
from the demonstration that the NA/Ad
ratio showed significant negative corre-
lations when plotted versus DA plasma
values at the 90-min and 120-min peri-
ods. Summarizing, the facts showing that
NA/Ad values were positively correlated
with DBP values support the postulation
that neural but not adrenal sympathetic
activity was responsible for the increase
of both parameters. Furthermore, the
significant negative correlations regis-
tered between the NA/Ad vs the
f5HT/p5HT ratios are consistent with
the postulation that the excitation of the
neural sympathetic activity triggered by
the drug was responsible for the inhibi-
tion of the parasympathetic activity.

Group N (Patients Showing Neural
Sympathetic Predominance)
These patients are characterized by the
highest levels of plasma NA + DA plus
raised NA/Ad ratio values. These find-
ings allow us to postulate that they are
affected by frank neural sympathetic
over adrenal sympathetic
predominance.60 The fact that
desipramine exacerbated the raised
NA/Ad ratio + the DA pre-drug plasma
values registered in these patients
strongly supports the postulation that
these overflow of circulating NA + DA
but not Ad arose from the hyperactive
sympathetic nerves rather than from the
adrenal glands.7,109-112

Taking into account the ability of a
small dose of desipramine to provoke
the dramatic changes reported in this
study seems obvious to postulate that
such effects are CNS-induced rather
than through peripheral mechanisms.
With respect to this, it should be remem-

bered that parentally injected
desipramine was not retained by the
liver and quickly crosses the blood brain
barrier. This drug (a NA-uptake
inhibitor) would act at the more active
rather than at hypoactive NA neurons,
which are not releasing NA. Thus, con-
sidering that neural sympathetic activity
is closely and positively correlated with
the pontomedullary A5(NA) nucleus, it
should be easy to assume that the drug
should act at this latter location rather
than at the hypoactive A6(NA) nucleus.
Desipramine should inhibit the uptake
of NA at the A5(NA) but not at the
A6(NA) axons, which were not releasing
noradrenaline in these patients.112 Thus,
the drug would accentuate the A5(NA)
over A6(NA) predominance that under-
lies diseases depending on the neural
sympathetic hyperactivity.113-115 In our
long experience dealing with this issue,
this obstacle can be avoided with the
addition of clonidine to the NA-uptake
inhibitor (desipramine).116-118 This alpha-
2 agonist is able to inhibit the hyperac-
tive A5(NA) neurons but not the
hypoactive A6(NA) and C1(Ad) neu-
rons.112,119,120 This effect will result in the
restoration of the balance between
A5(NA) vs A6(NA) and A5(NA) vs
C1(Ad) nuclei.119-124 The above neu-
ropharmacological strategy has allowed
us the successful treatment of thousands
of patients affected by neural sympa-
thetic predominance.

According to the above, the restora-
tion of the A5(NA) vs A6(NA) balance
results in the disinhibition of the adrenal
sympathetic activity, which is minimized
in patients affected by neural sympa-
thetic predominance.98,125,126 This target is
reached through the above mentioned
therapeutical strategy because the
A5(NA) and the Cl(Ad) medullary
nuclei interchange inhibitory axons.127,128

The C1(Ad) axons release adrenaline at
the A5(NA) nucleus whereas axons
from the latter release NA at the former
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nuclei. Both nuclei are crowded by
alpha-2 inhibitory autoreceptors, thus
the predominance of one of them should
inhibit the activity of the other nucleus.
These mechanisms explain the low levels
of adrenaline registered in the plasma of
patients affected by neural sympathetic
overactivity.59,129,130

The recovery of the activity of the
A6(NA) neurons, which are also inhibit-
ed by the overwhelming preponderance
of the A5(NA) neurons, merits addition-
al comments. The A6(NA) nucleus is
integrated by some 36,000 NA neurons
(more than any other NA nuclei located
at the CNS level).131-133 Axons of the
A6(NA) nucleus inhibit the A5(NA)
neurons and modulate the C1(Ad)
medullary nuclei. The neurophysiologi-
cal recovery of the A6(NA) + C1(Ad)
neurons registered after the above men-
tioned therapeutical approach helps to
explain the disappearance of symptoms
and the normalization of the neuroauto-
nomic disorders registered in patients
affected by diseases underlied by neural
sympathetic overactivity. In addition to
the above, the well-known physiological
minimization of the adrenal sympathetic
activity registered in elderly people is
highly reverted by the same neurophar-
macological strategy.130-134 Furthermore,
the neural sympathetic predominance
registered in elderly people helps to
understand the cause of all types of
pathophysiological phenomena fre-
quently registered in them (psychologi-
cal, cardiovascular, respiratory, sleep
disorders, etc). Special mention should
be devoted to the psychological distur-
bances. With respect to this, it should be
known that all types of psychotic syn-
dromes are underlied by a low number
of A6(NA) neurons. This deficit is an
inborn phenomenon in psychotic
patients and a secondary disorder
(because of involution) in patients
affected by senile dementia. With
respect to the above, we were the first to

demonstrate that neural sympathetic
overactivity underlies schizophrenia.17-

19,135 At the present time, it has been def-
initely demonstrated that patients
affected by this psychiatric disorder
have a greatly reduced number of
A6(NA) neurons. This factor would
explain the A5(NA) + neural sympathet-
ic predominance that they also pres-
ent.95,136-138

Not only catecholamines but also
indolamines were assessed in the pres-
ent study. The results obtained ratified
others showing that patients underlied
by neural sympathetic overactivity pres-
ent with raised p-5HT plus lowered
tryptophan circulating values. With
respect to this, it has been demonstrated
that the former is associated to the pre-
dominance of the median raphe (MR)
over the dorsal raphe (DR) serotonergic
nucleus, whereas the second disorder
parallels the exhaustion of the
DR(5HT) nucleus.12,23

Group A (Patients Showing Adrenal
Sympathetic Predominance)
These patients presented lowered NA
plus lowered NA/Ad plasma ratio, plus
enhancement of both the SBP/DBP
ratio and HR. These parameters were
normalized after the desipramine
administration. The facts showing that
NA/Ad values were found to be posi-
tively correlated with the DBP values at
the last 3 post-drugs periods support the
postulation that the drug enhanced neu-
ral sympathetic activity in these patients.
Although DA plasma values were also
increased by the administration of the
drug, no DBP changes were registered
in these patients. This phenomenon
should depend on the fact that in these
patients, plasma DA arises from the
adrenal glands source rather than from
the under-active sympathetic nerves. The
above postulation is supported by the
significant positive (and not negative)
correlations registered between Ad and
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DA at the 4 post-drug periods.
Our findings showing that IM

desipramine was also able to revert not
only the decreased NA/Ad ratio but also
the increased f5HT/p5HT ratio, reported
before the neuropharmacological thera-
py, in patients affected by adrenal sym-
pathetic predominance (Group A
patients) might be explained by the
enhancement of the neural sympathetic
activity. Furthermore, the normalization
of the raised f-5HT plasma levels regis-
tered in these patients was paralleled by
the reduction of the increased platelet
aggregability reported in them, which
should be triggered by the raised Ad
plasma levels that we found in these
patients before the administration of the
drug.86,102 These peripheral effects pro-
voked by the acute IM administration of
the drug strongly suggest that the
C1(Ad) over A5(NA) predominance
was reverted.

Summarizing, the IM injection of 10
mg of desipramine provoked the
enhancement of neural sympathetic
activity in normal subjects and patients
affected by both adrenal sympathetic
and neural sympathetic predominance.
Maximal effects were registered in the
latter group whereas minimal but signifi-
cant effects were observed in the other
type of patients. Neuropharmacological
therapy addressed to normalize the 2
types of CNS + ANS disorders was able
to trigger the disappearance of both
clinical symptoms as well as the physio-
logical disturbances which underlie
them. Finally, we discussed the relevance
of our results with this type of neu-
ropharmacological therapeutical strate-
gy in the clinical practice.
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